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The kinetics of irreversible annihilation of charged particles performing overdamped motion induced by

long-range interaction force, F(r)~r~ A

on the force exponent A. In one dimension we find that the densities decay as ¢~

, is investigated. The system exhibits rich kinetic behaviors depending

V2+N) gnd ¢~ YA+2N) Ghen

A>1 and 1/2<\<1, respectively, with logarithmic correction at A=1. For A=<1/2, the asymptotic behavior is

shown to be dependent on system size.

PACS number(s): 64.60.Cn, 64.60.My

I. INTRODUCTION

The kinetics of two-species diffusion-controlled annihila-
tion reaction, A+ B—0, between uncharged particles has
been a subject of extensive research for almost 20 years [1].
For sufficiently low spatial dimension, d<<4, even under ho-
mogeneous initial conditions, large-scale heterogeneities
arise that invalidate classical kinetic laws. Much less is
known about annihilation reaction between charged particles
with long-range power-law interaction, F(r)~r . An im-
portant case of Coulomb interaction (\=d—1 in d dimen-
sions) has been treated in a few studies [2—5] for d=2 and 3.
However, some of these works were based on unjustified
approximations while others were based solely on numerical
simulations, so their results are also uncertain. (Note that
even for pure annihilation of uncharged particles in three
dimensions the asymptotic regime is hardly reached on mod-
ern computers.) Moreover, competing results have appeared
in the literature; e.g., for the Coulomb systems, the classical
decay of concentration, n~t"!, has been advocated in [2,3]
in all dimensions, while Ref. [5] has argued for a slower
decay, n~1~%7, in two dimensions. We, therefore, see that
even the Coulomb case still deserves further investigation.
Other values of the interaction exponent A also naturally ap-
pear in applications with particles being dipoles, defects, vor-
tices, monopoles, disclinations, etc. One important example
is the quench of a one-dimensional Ising system from a dis-
ordered state to an ordered state. If spins interact via long-
range potential [6], the Hamiltonian may be expressed in
terms of interacting domain walls [7]. There are two types of
domain walls in the system, the domain walls with “up”
spins to the right and “down” to the left (A walls), and vice
versa (B walls). Thus, the spin chain is represented by an
alternating domain wall sequence ...ABABAB... . Domain
walls annihilate upon colliding, A + B—0, but since the al-
ternating structure persists in time, the reaction process is, in
fact, equivalent to the single-species annihilation, D+ D—0.
This system has been recently investigated [7-9], and it was
shown that particle concentration decays as ¢~ /1M,

In this paper we consider a truly two-species annihilation
model where the initial distribution of interacting particles
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(“charges”) is random (Poissonian). The forces between
charges are assumed to be proportional to »~*, with similar
charges repelling each other and dissimilar attracting each
other. Compared to the single-species case, the two-species
annihilation exhibits more rich kinetic behavior including the
dependence on the system size. In this study we focus on
one-dimensional (1D) systems that allow us to find rather
convincing numerical support for our scaling predictions.

The paper has the following structure: In the next section
we formally introduce the model, an ensemble of interacting
particles in one dimension with overdamped dynamics.
Then, relying on heuristic arguments, we obtain density de-
cay exponents for N>0 (peculiarities of the 1D Coulomb
system, A=0, are addressed in Appendix A). In Sec. III, we
present the results of numerical simulations. Finally, in Sec.
IV we discuss possible generalizations of the model includ-
ing higher dimensionality and ballistic motion, and make
general conclusions.

II. THE MODEL AND SCALING ARGUMENTS

We consider two-species systems containing A- and
B-type particles with charges +1 and —1 for “particles” and
“antiparticles,” respectively. Particles of both species move
continuously on a one-dimensional line and interact via long-
range force: F=gq'/r" for charges ¢ and g’ separated by
the distance r. Initially, A- and B-type particles are randomly
distributed with equal concentrations; for simplicity we put
the concentrations equal to 1.

Total force acting on the ith particle is equal to a sum of
pairwise forces:

'__l}\ﬁ, (1)

where g,==*1 and x, are charge and coordinate of the kth
particle. We will ignore particle inertia, i.e., motion of par-
ticles is assumed to be overdamped. Therefore, the velocity
of each particle v, is proportional to the total force F; acting
on it, v;= uF; . (In the following, we set the mobility u equal
to 1.) We will also ignore particle diffusion; that is, we will
assume that the drift dominates the random walk effects.
When two dissimilar particles collide, both of them irrevers-
ibly disappear; collisions between particles of the same spe-
cies are impossible because of repulsion. To summarize, we
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FIG. 1. Schematic illustration of domain structure. Typical do-
main has length L and consists of M =6 particles; average distance
between particles is R=L/N.

consider two-species annihilation of particles undergoing
overdamped noiseless motion. We will see that for a suffi-
ciently large force exponent (A>4 in one dimension), the
noise actually dominates the drift, and thus well-known
diffusion-controlled kinetic behavior [1] emerges. However,
for small A\, we expect that the long-time behavior is cor-
rectly described by our noiseless model. We will also briefly
discuss a model where the motion is ballistic (Sec. V).

Let us now consider time evolution of the system. We
cannot a priori expect that a mean-field description holds in
low dimensions, especially in one dimension. Remember that
the breakdown of the mean-field behavior in reaction-
diffusion models is generally attributed to the formation of
single-species domains [1]. We assume that the same takes
place in our model; at least in one dimension, the formation
of domains is inevitable.

Suppose that at time ¢ the length of a typical single-
species domain is L(¢). It means that an average number of
particles in such a domain is equal to initial imbalance of
majority and minority species on the length L(¢), which for
Poissonian initial distribution with the density one is of the
order of \L(¢). Therefore, the concentration n(¢) in a typical
domain behaves as

n(t)~ UNL(1). )

To get an insight into how a typical domain length
changes in time, we consider motion of a single particle A on
a domain edge (Fig. 1). Here we assume that the system is
entirely formed of well-defined domains of typical length L.
The total force acting on A from the particles on its left may
be evaluated as

M

i 1 1
F~>, —— + -
< x) ,Zl (x;+L)* ,:EI (x;+2L)*

3)

Here M is a typical number of particles in a domain, M
~+/L. Each sum on the left-hand side of Eq. (3) expresses a
contribution to the net force from a particular domain; to get
the total force these contributions have been added. It is clear
that the force exerted on A from all the particles to the right
may be calculated in exactly the same way. To simplify the
matter even further we assume that x;=~R X j, where R is an
average interparticle separation; R=L/M . Rewriting Eq. (3)
through R and M gives

M M

1 1 1 1
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Depending on the value of the force exponent A, different
situations appear. For A>1, the first sum converges to a finite

value for M —o while the other sums approach zero as
M~*D which means that only charges from the left and
right nearest neighbor domains essentially contribute to the
total force. For 0<<A<(1, all sums diverge as M '™ as M —o0,
The total force, being the sum of monotonically decreasing
sign-alternating terms, is of order of the contribution of the
first domain. In the borderline case A=1, the first sum di-
verges as logM while the other terms are monotonically de-
creasing, sign alternating, and finite. The dominate contribu-
tion is again provided by the nearest domains. To sum up,

M7 if 0<a<1
logM if A=1 (5)
1 if A>1.

1
F’VFX

On the other hand, a typical rate of change of the domain
length is of order of the velocity of any of its edges. Recall-
ing that R~M ~ \/Z, we obtain

L27% if 0<A<1
dL/dt~F~1{ L™"logL if A\=1 (©6)
L™M2 if A>1.

Solving (6) for L(¢) and using relation (2), we finally write
for the density decay asymptotics:

T MAFZN i g<a <
n(t)~4 (tlogt)™'? if x=1 (7
YN A>T,

These results are, in fact, correct only for 1/2<<A\=<2. The
upper bound follows from comparison of the random walk
length, LRW~t”2, with the drift length, L~r¥@*" when
A>1. For A\>2, Lrw>L, so a pair of charges can escape
annihilation through a random walk, and therefore the diffu-
sion controls the dynamics. Thus, for A\>2, the diffusion-
controlled asymptotic behavior, n~¢""4, is expected. The
lower bound, A=1/2, stems from the fact that an average
force acting on any particle in the infinite-particle 1D system
becomes infinite for A<<1/2. It can be shown rigorously by
deriving a Holtsmark-like [10] force distribution (this is de-
tailed in Appendix B). Here, we provide more qualitative
arguments that take into account the finiteness of the system.
First, we note that the calculation of the total force (3) has
implicitly assumed that the system is perfectly ordered—it
consists of similar domains of A and B particles; i.e., the
total charge of the first domain is equal, up to the sign, to the
total charge of the second domain, etc. In particular, it means
that for a system depicted in Fig. 1, the overall charge to the
left of the test particle A is —1, and the overall charge to the
right is zero. However, this picture is a “mean field” in
spirit; hence, it can lead to erroneous results for truly random
systems. Fluctuations in initial charge distribution in the sys-
tem with N particles produce the net charge of the order
\/7\/— to the left and to the right of the test particle. Qualita-
tively, we can estimate the effect of charge imbalance by
putting \/ﬁ equidistant charges of one sign to the right and
the same amount of the opposite charges to the left. (When
we consider finite systems of charges we implicitly assume
that they satisfy the neutrality condition; generally, the total
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net charge determines the long-time behavior.) The initial
size of the system is N, so the distance between nearest
charges left in the system is Jﬁ ; thus, the force F due to
the charge imbalance is

1 Xy
FNN W ]Zl FNN—)\Jr]/z‘ (8)

While Fy—0 as N—, this force does not affect the dy-
namics of the model. Thus, for A>1/2 our previous estimate,
F~LYV2 gives the dominant contribution, and the size-
independent dynamics [7] emerges. However, for A<<1/2 the
total force acting on a particle grows with system size even
for overall neutral systems; therefore, it should dominate
over the “regular” force (3) and control the dynamics of the
system. It seems reasonable to assume that at the early stages
of time evolution, when the distribution of the particles is
still almost random, the motion of domain edges is con-
trolled by the force (8). Repeating the steps used in deriving
Eq. (7), with F~NY>"* instead of Eq. (6), we obtain for the
density decay

n(t)~N(2)\—l)/4t~1/2‘ (9)

However, this estimate may become inapplicable on the later
stages of evolution. Indeed, the dynamics described by Eq.
(9) is extremely fast since it is size dependent, so the charge
distribution that emerges can be significantly different from
the Poissonian; as a result, our assumption about the type of
randomness of the particle distribution could become less
and less appropriate.

II1. SIMULATION RESULTS

To check our heuristic predictions, we have performed
numerical simulations for A=1, 0.75, 0.5, 0.25, and O (the
Coulomb case A=0 turns out to be special; it will be dis-
cussed separately in Appendix A). Our system initially con-
sisted of 10 000 particles of each species randomly distrib-
uted with concentration 1. First, the net force (1) is
calculated for each particle. We compute all the forces di-
rectly without applying any multipolelike expansion that
could be useful in many dimensions [12]. With the particle
velocity equal to the total force, we employ a simple Euler
update procedure for each time step: Ax;=F;Az. The selec-
tion of time interval Ar was merely experimental. Since on
the last stages of evolution simulations run very fast (few
particles are left), we, unlike Refs. [7] and [8], keep At con-
stant during a run. Finally the results are averaged over 10
runs. The selection of boundary conditions does not seem to
affect the results of simulations of the two-component sys-
tem with overall neutrality, except for, maybe, its latest
stages. We ran the simulations for A=0.25 with both periodic
and open boundary conditions; the results for concentration
coincided within a statistical error. Hence, we use open
boundary conditions for all further simulations.

In Fig. 2 we plot, for various A, the concentration of either
species versus time. As we anticipated, for 1/2<<\ our pre-
dictions for the decay of concentration are in good agreement
with the results of simulation. Indeed, the average slope of
the log[n(z)] versus logz plot for A=1 is —0.322 [the heu-
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FIG. 2. Plot of concentration n(¢) vs time on a double logarith-
mic scale (arbitrary units) for A=1 (<), A=3/4 (A), \=1/2 (V),
A=1/4 (O), and A=0 (*).

ristic argument gives (rlogf)"'*], and —0.401 (compared to
—2/5) for A=3/4. Performing numerical simulations with a
twice smaller system (5000 pairs of particles), we did not
find any significant system size dependence for these values
of \. As for A=<1/2, no power-law behavior can be observed
for density decay. However, at the early stages of evolution,
local exponents are close to —1/2 as follows from Eq. (9); as
time goes on, the density decay rate increases.

IV. DISCUSSION

Considering the dynamics of domain interfaces and using
simple heuristic arguments, we have predicted the asymp-
totic density decay in a two-species annihilation reaction sys-
tem with long-range interaction and overdamped motion. In
principle, this approach can be generalized on similar sys-
tems in an arbitrary spatial dimension d. We assume that in
the asymptotic regime the system still consists of well-
defined domains of opposite species, and analyze the dynam-
ics of interfaces as we did in Sec. II for the 1D case. First, we
relate the concentration n(#) to the typical domain size L(¢)
by a straightforward generalization of Eq. (2), n~ 1/{L.
Then, we estimate a force exerted on a particle near an in-
terface and obtain a generalization of Eq. (3), with typical
terms like R ™3 <,,j¢!/j*. Here R is an average interpar-
ticle distance and M? is an average number of particles in a
domain, R~M ~ \/Z as previously. For A>d the neighboring
particles provide the dominant contribution to the force, i.e.,
F~R ™ ~L7™2 On the other hand, for A<d all particles
from the neighboring domains should be taken into account,
and we obtain F~M? "R ~L 242 1n the borderline
case of A=d, a logarithmic correction appears,
F~L~%og(L). Substituting these estimates into L=F, we
solve for the size L, and get for the concentration:

2= d+2N) if gpn<a<d
n(1)~{ (tlogt) ¥C+d if \=d (10)
TN >4
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For A<<d/2, we expect size-dependent kinetics. This assertion
is justified in Appendix B.

As in the 1D case, let us compare the typical domain size
L and the diffusion length scale, Lryw~1"?. We see that for
A>d the random walk dominates over the drift, and
diffusion-controlled behavior is expected. Thus, the regime
described by the lower line of Eq. (10) does not appear for
d=2; instead, the correct behavior is provided by the
diffusion-controlled decay of the system of noninteracting
particles [1], i.e., n~1"%* for d<4 and n~1""' for d=4.

Note that for truly Coulomb systems, A=d — 1, the scaling
prediction of Eq. (10) is n~¢"'; i.e., the classical kinetic
law. This is expected to hold when d2=A=d—1=<2, ie,
2<<d=<3. For d<2, size-dependent kinetics is anticipated;
while for d>3, the Coulomb interaction becomes irrelevant
and the diffusion-controlled behavior emerges. Another inter-
esting example is the system of D-dimensional Coulomb
charges confined to the D—1 hypersurface. In this case the
force exponent A=D—1 is equal to the dimension of the
hypersurface d=D—1 and Eq. (10) predicts a logarithmi-
cally corrected power-law behavior, n~ (rlogr) ~ (P~ D/(P+ D),

However, it is not clear whether the concept of unpen-
etrable (untransparent) domains with continuous boundaries
is still applicable for 4> 1. Competition between screening,
which makes long-range interaction effectively short ranged,
and annihilation may also significantly affect the behavior of
the system. We attempted to simulate a 2D system on a lat-
tice. Either because of the large effective diffusion, which is
inevitably introduced by the discrete nature of the lattice
model, or for some deeper reason, we were unable to observe
any scalinglike behavior. Since many-dimensional continu-
ous many-body simulations are still computationally chal-
lenging, we leave this problem for the future.

More can probably be done with one-dimensional systems
as well. One can try to find exact results for some specific
values of the force exponent A. For the Coulomb system,
A=0, we indeed succeeded in finding some properties ana-
lytically (see Appendix A and Ref. [11]), but we still could
not find a complete solution. Another extreme case, A—®, is
also theoretically challenging. (In fact, the diffusion deter-
mines the dynamics for A>4 so one should consider a
strictly noiseless system.) The dynamics in the A—o° limit is
extremal: One picks the pair of nearest neighbors that are
closest to each other and removes it if the charges are dis-
similar, or recedes them if the charges are similar. The reced-
ing is stopped when the distance reaches the second minimal
intercharge distance. Then, if this second closest pair con-
tains dissimilar charges, it is removed while the first pair
continues receding; if the second pair is also the same spe-
cies, both pairs recede. If the initial sequence is alternating as
it takes place with domain walls in the quench process, one
always removes the closest pairs, and the domain-size distri-
bution function approaches the scaling form. This model
turns out to be completely solvable [8,13—15]. It would be
very interesting to study a more complex version of the ex-
tremal dynamics that arises from the present two-species an-
nihilation process.

Finally, we discuss a model where motion of the particles
is ballistic; i.e., it is described by Newton’s laws. We again
focus on the one-dimensional situation. It is clear enough
that the only change one needs to make in the above ap-
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FIG. 3. RW representation of a two-species neutral system.
Number of particles of each species, N=17. A neutral segment of
the length 2L =16 is shown having £ =2 uncompensated charges to
the left and to the right of it.

proach is to put d>L/dt? instead of dL/dt into the left-hand
side of Eq. (6). Assuming that initial velocities are irrelevant,
we obtain for the concentration

NOCA=DA=LGf N <1/2

if 12<x<1

if A=1 (11)
if 1<A<2

2 if A=2.

(21 +2))
(rlogr) =23
-2

n(t)~

When A=2, the inertia dominates the drift and, therefore, the
ballistic-controlled asymptotic behavior [16], given by the
last line of Eq. (11), follows.

Numerical simulations performed for A=0.75 showed that
the concentration decays as ¢ %7 compared to r~*° as fol-
lows from Eq. (11).
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APPENDIX A: A=0

The A=0 case, corresponding to the truly 1D Coulomb
system, has several peculiar features. Since the forces be-
tween particles do not depend on the distance, and particles
disappear in pairs, the net force acting on a particle is con-
stant throughout its life. It means that velocity of any particle
is constant and equal to the difference between total charge
to the left and total charge to the right of it multiplied by a
charge of the particle. Taking into account that initial distri-
bution of particles is Poissonian, one can easily describe the
behavior of the system if the probability distribution for
“charge imbalance” were known. To get an insight about
this charge imbalance distribution, we look at our configura-
tion of charges as on a 1D random walk (RW) (Fig. 3). Step
up corresponds to a positive charge, step down to the nega-
tive; since the system is neutral overall, the RW returns to the
origin after 2N (the size of the system) steps. The net force
acting on a particle is equal to the ‘“‘height” %, positive or
negative, of the corresponding point in the RW picture. The
joint distribution function W,,(4,2L) tells us how many seg-
ments (loops in the RW terminology) of the length 2L, start-
ing and ending at the “height” A from the origin, exist in a
RW coming to the origin (not necessarily for the first time)
after 2N steps. Knowing this function, one can readily cal-
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culate a life expectation time for each particle, and therefore
the concentration decay rate:

dl’t’__ 1 N N-L

TT T 2 Wan(h2L)Py[202h+ D] (AD)
L=0 h=0

Here L is initial system length and P;(x) =x/e”*/j! the Pois-
son distribution function, So far we have been able to deter-
mine another function, W,y(2L), which gives the probabil-
ity that the maximum length of the “‘zero-height” segment in
a system with 2N charges is 2L [11]. This maximum length
segment determines the lifetime of the whole system, which
is shown to be proportional to its size 2N. Moreover, the
lifetime distribution function has a remarkably rich structure
(an infinite set of singularities, etc.; see [11]).

Although we were not able to find the exact expression
for the decay of concentration in this case, numerical simu-
lations of this problem prove to be very simple. Instead of
running a molecular dynamics algorithm, it is sufficient to
calculate all the net forces once and find an annihilation part-
ner for each particle; after that, we know the lifetimes for all
the particles in the system. It enabled us to check an accuracy
of our molecular dynamics simulation for our standard (10*
pairs) system size and also to study the systems with up to
10° particles of each species. Even for these relatively big
systems, we were unable to find any power-law behavior; the
function that fits best our simulation results looks like
n(r)~exp(—0.05 log™).

APPENDIX B: TYPICAL FORCE IN A SYSTEM OF
CHARGED PARTICLES

A problem of distribution of a typical force in a system of
particles with Coulomb interaction was first studied by
Holtsmark [10]. Using the same approach, we will show that
for arbitrary dimensionality and »~* interaction, the typical
(or mean) force is finite in an infinite system only for some
range of the force constants A\, specifically for N\>d/2. We
start from an expression for the force distribution function
W(F), which gives the probability that the force, acting on a
“test particle,” which we will put at the origin, is equal to F:

(B1)

N
P2 70))

av

W(i):< B
where f(r”j)=7j/rj-‘+1 is the force exerted by a jth particle
on the test one. Since we assume that spatial distribution of
particles is random and independent, it is sufficient to con-

sider a one-component system. Replacing the & function by
auxiliary integration over dk we obtain

W(F)= oo f exp(ik- F)S(R)dF, (B2)

with
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(B3)

Here f=7#/r**!, N is the number of particles in the system,
and V is the volume. Rewriting (B3) in the form

N
) (B4)

. 1 o2
S(ky={1— ‘—/f (1—e " * a7
and taking the thermodynamic limit, N—o° and V— o where
N/V=n is kept fixed, yields

S(lz)=exp(—nJ[1—6_"’;';/"H1]d7). (B5)
After expanding the exponent in the integrand for large r
and performing angular integration (which eliminates all
odd-order terms) one finds that for system size R— <, the
integral in the left-hand side of Eq. (B5) converges only if
A>d/2 while for A<<d/2 the integral diverges with the system
size. More precisely, a considerable but straightforward com-
putation yields
S(R)=S(k)=exp[ —nQA(d,\)k¥] (B6)
for A>d/2. In Eq. (B6), Q,=27"%/T(d/2) denotes the sur-
face area of the unit sphere in d dimensions and A(d,\) is
the shorthand notation for the integral

% dZ

d\[2 di2—1
A(d,)\)=f0 W{I—F(EN;) Jd,zﬂl(z)],

with I'(z) being the Euler I" function, and J,(z) the Bessel
function. For A<<d/2 the integral in the right-hand side of Eq.
(B5) grows as [2Q,/d(d—2\)]R? k. Returning back to
Eq. (B2) we see that in the case of (A<d/2) the net force is
given by

. 1 - 20 Vol
W(F)Z(—z?)gj exp(ik-F— d(?;)\)Rd’“kz)dk.

(B7)

In the limit R—o, we compute the integral in Eq. (B7)
asymptotically to find

W(F)~[(d—2N)RM4F]d-!

X exp[ — const(d —2N\)R* 9F?]. (B8)
E(;uations (B7) and (B8) are valid for A<<d/2. For \=d/2,
RY"?}/(d—2\) should be replaced by logR. For d=1 and
RxN, the net force has the Gaussian distribution, W(ﬁ )
o< (1 =2N) 2N 2expl — (1—2M)N?A"1F?], and therefore the
typical force grows with size as NV2™* in agreement with
qualitative results of Sec. II. Note also that for A\=1/2 the
typical force still grows with system size, F~+/logN, and
hence the density decay of the form n(z)~ (logN) ™ Vap =172 3¢
expected.
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